ChrR, a soluble quinone reductase of Pseudomonas putida that defends against H2O2.

نویسندگان

  • Claudio F Gonzalez
  • David F Ackerley
  • Susan V Lynch
  • A Matin
چکیده

Most bacteria contain soluble quinone-reducing flavoenzymes. However, no biological benefit for this activity has previously been demonstrated. ChrR of Pseudomonas putida is one such enzyme that has also been characterized as a chromate reductase; yet we propose that it is the quinone-reducing activity of ChrR that has the greatest biological significance. ChrR reduces quinones by simultaneous two-electron transfer, avoiding formation of highly reactive semiquinone intermediates and producing quinols that promote tolerance of H(2)O(2). Expression of chrR was induced by H(2)O(2), and levels of chrR expression in overexpressing, wild type, and knock-out mutant strains correlated with the H(2)O(2) tolerance and scavenging ability of each strain. The chrR expression level also correlated with intracellular H(2)O(2) levels as measured by protein carbonylation assays and fluorescence-activated cell scanning analysis with the H(2)O(2)-responsive dye H(2)DCFDA. Thus, enhancing the activity of ChrR in a chromate-remediating bacterial strain may not only increase the rate of chromate transformation, it may also augment the capacity of these cells to withstand the unavoidable production of H(2)O(2) that accompanies chromate reduction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chromate-reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli.

Cr(VI) (chromate) is a toxic, soluble environmental contaminant. Bacteria can reduce chromate to the insoluble and less toxic Cr(III), and thus chromate bioremediation is of interest. Genetic and protein engineering of suitable enzymes can improve bacterial bioremediation. Many bacterial enzymes catalyze one-electron reduction of chromate, generating Cr(V), which redox cycles, generating excess...

متن کامل

Crystal Structure of ChrR—A Quinone Reductase with the Capacity to Reduce Chromate

The Escherichia coli ChrR enzyme is an obligatory two-electron quinone reductase that has many applications, such as in chromate bioremediation. Its crystal structure, solved at 2.2 Å resolution, shows that it belongs to the flavodoxin superfamily in which flavin mononucleotide (FMN) is firmly anchored to the protein. ChrR crystallized as a tetramer, and size exclusion chromatography showed tha...

متن کامل

Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction.

Chromate [Cr(VI)] is a serious environmental pollutant, which is amenable to bacterial bioremediation. NfsA, the major oxygen-insensitive nitroreductase of Escherichia coli, is a flavoprotein that is able to reduce chromate to less soluble and less toxic Cr(III). We show that this process involves single-electron transfer, giving rise to a flavin semiquinone form of NfsA and Cr(V) as intermedia...

متن کامل

Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase.

Cr(VI) (chromate) is a widespread environmental contaminant. Bacterial chromate reductases can convert soluble and toxic chromate to the insoluble and less toxic Cr(III). Bioremediation can therefore be effective in removing chromate from the environment, especially if the bacterial propensity for such removal is enhanced by genetic and biochemical engineering. To clone the chromate reductase-e...

متن کامل

Enhancement of Pyrroloquinoline Quinone Production and Polyvinyl Alcohol Degradation in Mixed Continuous Cultures of Pseudomonas putida VM15A and Pseudomonas sp. Strain VM15C with Mixed Carbon Sources.

In a mixed continuous culture of Pseudomonas putida VM15A and Pseudomonas sp. strain VM15C with polyvinyl alcohol (PVA) as the sole source of carbon, growth of the PVA-degrading bacterium VM15C and, hence, PVA degradation were limited by the growth factor, pyrroloquinoline quinone, produced by VM15A. Feeding of a carbon source for VM15A, ethanol, with PVA enhanced pyrroloquinoline quinone produ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 280 24  شماره 

صفحات  -

تاریخ انتشار 2005